Abstract

Background/Objectives: The accurate categorization of brain MRI images into tumor and non-tumor categories is essential for a prompt and effective diagnosis. This paper presents a novel methodology utilizing advanced Convolutional Neural Network (CNN) designs to tackle the complexity and unpredictability present in brain MRI data. Methods: The methodology commences with an extensive preparation phase that includes image resizing, grayscale conversion, Gaussian blurring, and the delineation of the brain region for preparing the MRI images for analysis. The Multi-verse Optimizer (MVO) is utilized to optimize data augmentation parameters and refine the configuration of trainable layers in VGG16 and ResNet50. The model’s generalization capabilities are significantly improved by the MVO’s ability to effectively balance computational cost and performance. Results: The amalgamation of VGG16 and ResNet50, further refined by the MVO, exhibits substantial enhancements in classification metrics. The MVO-optimized hybrid model demonstrates enhanced performance, exhibiting a well-calibrated balance between precision and recall, rendering it exceptionally trustworthy for medical diagnostic applications. Conclusions: The results highlight the effectiveness of MVO-optimized CNN models for classifying brain tumors in MRI data. Future investigations may examine the model’s applicability to multiclass issues and its validation in practical clinical environments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.