Abstract
Cell metabolism can be reprogrammed by tissue hypoxia leading to cell transformation and glioblastoma multiforme (GBM) progression. In response to hypoxia, GBM cells are able to express a transcription factor called hypoxia inducible factor-1 (HIF-1). HIF-1 belongs to a family of heterodimeric proteins that includes HIF-1α and HIF-1β subunits. HIF-1α has been reported to play a pivotal role in GBM development and progression. In the present review, we discuss the role of HIF-1α in glucose uptake, cancer proliferation, cell mobility and chemoresistance in GBM. Evidence from previous studies indicates that HIF-1α regulates angiogenesis, metabolic and transcriptional signaling pathways. Examples of such are the EGFR, PI3K/Akt and MAPK/ERK pathways. It affects cell migration and invasion by regulating glucose metabolism and growth in GBM cells. The present review focuses on the strategies through which to target HIF-1α and the related downstream genes highlighting their regulatory roles in angiogenesis, apoptosis, migration and glucose metabolism for the development of future GBM therapeutics. Combined treatment with inhibitors of HIF-1α and glycolysis may enhance antitumor effects in clinical settings.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.