Abstract

A numerical investigation of the immersion quenching process is presented in this paper. Immersion quenching is recognized as one of the common ways to achieve the desirable microstructure, and to improve the mechanical properties after thermal treatment. Furthermore it is important to prevent distortion and cracking of the cast parts. Accurate prediction of all three boiling regimes and the heat transfer inside the structure during quenching are important to finally evaluate the residual stresses and deformations of thermally treated parts. Numerical details focus on the handling of the enthalpy with variable specific heat capacity in the solid. For two application cases, comparison between measured and simulated temperatures at different monitoring positions shows very good agreement. The study demonstrates the capability of the present model to overcome the numerical challenges occurring during immersion quenching and it is capable of predicting the complex physics with good accuracy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call