Abstract

Chalcogenide glasses present several original properties when being compared to the reference silica glass. They are very non linear, hundred to thousand times more non linear than the standard silica, they are very transparent in the infrared, until 10 μm to 20 μm depending on their composition, and they can be drawn into optical fibers. Thus, the case of chalcogenide photonic crystal fibers (PCF) is of particular interest. Indeed, the effective modal area is adjustable in PCF thanks to geometrical parameters. Then chalcogenide microstructured fibers with small mode area could lead to huge non linear photonic devices in the infrared by the combination of the intrinsic non linearity of these glasses with the non linearity induced by the PCF. Chalcogenide photonic crystal fibers offer therefore a great potential for applications in the fields of Raman amplification or Raman lasers and supercontinuum generation in the mid infrared until at least 5 μm. The possibility to design PCF exhibiting a working range in the mid infrared and more specifically in the 1-6 μm wavelength range opens also perspectives in the optical detection of chemical or biochemical species. This contribution presents the advances in the elaboration of such chalcogenide photonic crystal fibers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.