Abstract

Abstract Tunable semiconductor lasers have many important applications such as wavelength division multiplexing, light detection and ranging, and gas detection. The increased interest in silicon photonics has led to the rapid development of miniaturized on-chip tunable semiconductor lasers. However, silicon has poor light-emitting properties. Therefore, realizing high-performance tunable semiconductor lasers requires the integration of light sources with silicon. In this study, we review silicon-based light source integration methods and the development of silicon-based integrated tunable semiconductor lasers. Considering that narrow-linewidth performance greatly expands the applications of tunable semiconductor lasers, methods for reducing the linewidth of tunable lasers are summarized. Finally, the development trends and prospects for silicon-based integrated light sources and silicon-based integrated tunable lasers are analyzed and discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.