Abstract
Graphene-based polymer composites with improved physical properties are of great interest due to their lightweight, conductivity, and durability. They have the potential to partially replace metals and ceramics in several applications which can reduce energy and cost. The obtained properties of graphene-based polymer composites are often linked to the way graphene is dispersed in the polymer matrix. Preparation techniques like solution mixing, melt blending, and in-situ polymerization have been used to obtain graphene-based polymer composites. Dispersing and aligning graphene fillers within the composite is a key factor in enhancing the thermal and electrical conductivity values of the composites due to graphene’s anisotropic properties. The effect of the preparation methods of these composites on their physical-chemical properties is discussed in this review where we presented the advances that were achieved so far in the preparation techniques used showing the highest values ever achieved for electrical and thermal conductivity for these graphene-based polymer composites. Also, we presented the possible applications where graphene-based composites can be utilized.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.