Abstract

The space environment raises many challenges for new materials development and ground characterization. These environmental hazards in space include solar radiation, energetic particles, vacuum, micrometeoroids and debris, and space plasma. In low Earth orbits, there is also a significant concentration of highly reactive atomic oxygen (AO). This Progress Report focuses on the development of space-durable polyimide (PI)-based materials and nanocomposites and their testing under simulated space environment. Commercial PIs suffer from AO-induced erosion and surface electric charging. Modified PIs and PI-based nanocomposites are developed and tested to resist degradation in space. The durability of PIs in AO is successfully increased by addition of polyhedral oligomeric silsesquioxane. Conductive materials are prepared based on composites of PI and either carbon nanotube (CNT) sheets or 3D-graphene structures. 3D PI structures, which can expand PI space applications, made by either additive manufacturing (AM) or thermoforming, are presented. The selection of AM-processable engineering polymers in general, and PIs in particular, is relatively limited. Here, innovative preliminary results of a PI-based material processed by the PolyJet technology are presented.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.