Abstract
In recent decades, remote sensing of vegetative drought and phenology has gained considerable attention from researchers, leading to a significant increase in research activity in this area. While new drought indices are being proposed, there is also growing attention on how variations in phenology affect drought detection. This review begins by exploring the crucial role of satellite optical and thermal remote sensing technologies in monitoring vegetative drought. It presents common methods after revisiting the foundational concepts. Then, the review examines remote sensing of land surface phenology (LSP) due to its strong connection with vegetative drought. Subsequently, we investigate vegetative drought detection techniques that consider phenological variability and recommend approaches to improve the detection of vegetative drought, emphasizing the necessity to incorporate phenological metrics. Finally, we suggest potential future work and directions. Unlike other review papers on remote sensing of vegetative drought, this review uniquely surveys the comprehensive advancements in both detecting vegetative drought and estimating LSP through optical and thermal remote sensing. It also highlights the necessity and potential applications for these practices.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.