Abstract

Separation of mixtures of chemicals, ubiquitous in chemical and petrochemical industries, by distillation is energy intensive. Nearly 3% of the overall energy is used for distillation in the United States. Improving the distillation process is crucial for making chemical industries more sustainable. However, designing distillation sequences is challenging because the choice set is vast, and the equations governing the physical process are highly nonconvex. Traditional design practices rely on heuristics and often result in suboptimal solutions. Tumbalam Gooty et al. present the first approach that reliably identifies the distillation sequence that requires the least energy for a given separation. By embedding convex hulls of substructures and adapting the reformulation-linearization technique to fractions of polynomials, they demonstrated that their approach outperforms the state-of-the-art. Their work will help the chemical industry reduce greenhouse gas emissions associated with distillation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call