Abstract

This paper introduces developments in modified techniques for the generation of unstructured, non-uniform, dual orthogonal meshes which are suitable for use with co-volume solution schemes. Two new mesh generation techniques, a modified advancing front technique and an octree-Delaunay algorithm, are coupled with a mesh optimisation algorithm. When using a Delaunay–Voronoi dual, to construct mutually orthogonal meshes for co-volume schemes, it is essential to minimise the number of Delaunay elements which do not contain their Voronoi vertex. These new techniques provide an improvement over previous approaches, as they produce meshes in which the number of elements that do not contain their Voronoi vertex is reduced. In particular, it is found that the optimisation algorithm, which could be applied to any mesh cosmetics problem, is very effective, regardless of the quality of the initial mesh. This is illustrated by applying the proposed approach to a number of complex industrial aerospace geometries.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.