Abstract

ABSTRACT The ocean is the largest carbon reservoir on Earth and serves as a significant sink for atmospheric CO2. Of the known mechanisms for ocean CO2 absorption, the biological pump is considered the most important for carbon sequestration due to its economic and efficient advantages. Using microalgae to capture CO2 has several advantages, including a short cultivation period, high carbon sequestration efficiency, and a low investment cost. This article provides an overview of the methods used to screen algae species in microalgal carbon sequestration technology, as well as the expected effects of carbon sequestration. This article analyzes the appropriate cultivation conditions for algae, including the type of photobioreactor, light intensity, CO2 concentration, and nutritional requirements. The article contends that achieving accurate control of multiple environmental factors during microalgal cultivation and optimizing the internal structure of the cultivation device are key components for improving microalgal biomass production and CO2 fixation ability. The results of life-cycle assessments (LCA) indicate that the production of high-value compounds using microalgae is capable of achieving negative carbon emissions. Finally, this paper evaluates the practicality and economic feasibility of microalgae carbon sequestration and also discusses the future challenges and prospects for the development of this technology.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call