Abstract
Background: A PBPK model allows the prediction of the concentration of drug amounts in different tissues and organs over time and can be used to simulate and optimize different therapeutic protocols in healthy and sick individuals. The objective of this work was to create a PBPK model to predict propofol doses for healthy canines and canines with hepatic impairment. Methods: The study methodology was divided into two major phases, in which the first phase consisted of creating the PBPK model for healthy canines, and in the second phase, this model was adjusted for canines with hepatic impairment. The model for healthy canines presented good predictive performance, evidenced by the value of the performance measure of the geometric mean fold error that ranged from 0.8 to 1.25, meeting the double error criterion. The simulated regimen for healthy canines, i.e., of 5 mg/kg (administered as a bolus) followed by a continuous infusion at a rate of 0.13 mg/kg/min, was sufficient and ensured that all simulated subjects achieved the target plasma concentration. Canines with 60% and 40% liver function had infusion rate adjustments to ensure that individuals did not exceed the therapeutic window for maintenance of anesthesia. Results: The results presented in this manuscript are suggestive of the effectiveness and practicality of a PBPK model for propofol in canines, with a particular focus on hepatic impairment.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have