Abstract

Artificial photosynthesis, encompassing the photocatalytic generation of H2 and CO2 reduction innovations, seems to be a highly promising approach. This is due to its ability to efficiently transform CO2 into hydrocarbon fuel and valuable chemical products using solar energy as a direct energy source. This will simultaneously help to mitigate global warming and energy shortage issues. Chalcogenide‐based semiconductors have recently gotten a lot of attention as an important area of research for photocatalytic H2 production and CO2 conversion, owing to their low band gap energy, suitable band structures, and a great photoresponsivity spectrum. Modifying chalcogenides into their heterostructures could be a great way to solve problems like photo corrosion and carrier recombination. Therefore, this review summarized a series of different modifications of chalcogenides and recent developments in their photocatalytic and photo electrocatalytic performance, particularly in H2 production and CO2 conversion. Lastly, we discussed the challenges, limitations, areas for development, and future prospects of chalcogenides and their heterostructures capable of utilizing visible light to produce H2 gas and reduce CO2.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.