Abstract

The growing demand for sustainable, cost-effective and sensitive technologies for food safety assessment has led to the investigation of advanced analytical techniques that minimize environmental impact. In this regard, implementing a sensing probe utilizing sulfur quantum dots (SQDs) manufactured using sulfur will not only minimize the environmental impact of waste disposal but also promote efficient use of resources. Currently, SQDs are emerging as excellent functional materials in various research fields due to their non-toxicity, antibacterial properties, biocompatibility, and excellent photoluminescence properties. This review presents the development and prospects of SQD-based detection systems in food and their prospects for tracking contaminants or quality changes in packaged foods. Despite the current rare applications in the food industry, SQDs can be considered potential candidates to develop new intelligent nanosensors for food quality control. This review provides an overview of the impact and feasibility of using SQD to detect and analyze food hazards and discusses future applications. In particular, this review discusses the challenges of existing analytical methods and highlights the advantages and disadvantages of SQD for food safety. The use of SQD can overcome the limitations of traditional food analysis methods and become an advanced method to analyze and detect food safety.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.