Abstract
Magnesium-based hydrogen storage materials represent a hydrogen storage technology with broad application prospects. As the global energy crisis and environmental pollution issues become increasingly severe, hydrogen, as a clean and efficient energy source, has garnered growing attention. Magnesium-based hydrogen storage, serving as a crucial means for storing and transporting hydrogen, is gaining prominence due to its abundant resources, low cost, low density, and high hydrogen storage density. However, challenges in terms of absorption/desorption rates, temperature, activation energy, and enthalpy during hydrogen application impede its development. To address these challenges, this paper systematically reviews current research on magnesium-based hydrogen storage materials, encompasses their types, characteristics, and hydrogen absorption mechanisms. Furthermore, it delves into the impacts of nanoscale dimensions, alloying, doping, and catalysis on the performance of magnesium-based materials. The aim is to provide valuable insights for research in related fields.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Progress in Natural Science: Materials International
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.