Abstract

The immune microenvironment plays a key role in the development and progression of tumors. In recent years, with the rapid advancement of high-throughput sequencing technologies, researchers have gained a deeper understanding of the composition and function of immune cells in the tumor microenvironment. However, traditional bulk sequencing technologies are limited in resolving heterogeneity at the single-cell level, constraining a comprehensive understanding of the complexity of the tumor microenvironment. The advent of single-cell RNA sequencing technology has brought new opportunities to uncover the heterogeneity of the immune microenvironment in lung cancer. Currently, T-cell-centered immunotherapy in clinical settings is prone to side effects affecting prognosis, such as immunogenic drug resistance or immune-related pneumonia, with the key factor being changes in the interactions between immune cells and tumor cells in the tumor microenvironment. Single-cell RNA sequencing technology can reveal the origins and functions of different subgroups within the tumor microenvironment from perspectives such as intercellular interactions and pseudotime analysis, thereby discovering new cell subgroups or novel biomarkers, providing new avenues for uncovering resistance to immunotherapy and monitoring therapeutic efficacy. This review comprehensively discusses the newest research techniques and advancements in single-cell RNA sequencing technology for unveiling the heterogeneity of the tumor microenvironment after lung cancer immunotherapy, offering insights for enhancing the precision and personalization of immunotherapy. .

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.