Abstract
The classification of news articles is a crucial technology for processing news information, aiding in the organization of information. It is challenging to classify news due to the continuous emergence of news that requires processing. The modern technological era has reshaped traditional lifestyles in various domains. Similarly, the medium of publishing news and events has experienced rapid growth with the advancement of Information Technology. In this research, news article classification is organized into five selected domains: sports, entertainment, politics, business, and weather news. The classification involves both common and uncommon approaches, along with datasets based on Machine Learning and Deep Learning techniques. Furthermore, the evaluation incorporates various metrics such as precision, recall, and accuracy to compare approaches across the selected five news domains with datasets. To narrow the focus, we limited the news categorization to a few domains (sports, entertainment, politics, business, and weather) to facilitate a better understanding of a large amount of data through concise content. We recommend our work to individuals interested in extending and building upon my research over time.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.