Abstract

Lithium-ion batteries are frequently utilized in electric vehicles because of their high energy density and prolonged cycle life. Maintaining the right temperature range is crucial since lithium-ion batteries' performance and lifespan are highly sensitive to temperature. This study discusses a practical battery heat control system in this setting. The phenomenon of heat generation and significant thermal problems with lithium-ion batteries are reviewed in this work. The studies on various battery thermal management systems (BTMS) are then thoroughly analysed and arranged into groups based on thermal cycle possibilities. Direct refrigerant two-phase cooling, second-loop liquid cooling, and cabin air cooling are all components of the BTMS. Phase change material cooling, heat pipe cooling, and thermoelectric element cooling are all future parts of the BTMS. The maximum temperature and maximum temperature differential of the batteries are examined for each BTMS, and a suitable BTMS that addresses the drawbacks of each system is discussed. Finally, a novel BTMS is suggested as a practical thermal management solution for lithium-ion batteries with high energy density.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call