Abstract

In this paper some highlights are presented of an integrated numerical and experimental approach to obtain an in-depth understanding of the high strain rate behavior of materials. This is illustrated by an investigation of the multiphase TRansformation Induced Plasticity (TRIP) steel. ‘Classic’ high strain rate tensile experiments using a split Hopkinson tensile bar setup are complemented with strain rate jump tests, tensile tests at elevated temperatures and interrupted experiments. High strain rate compression and three-point bending experiments are performed on the steel sheets as well. The results reveal the excellent energy-absorption properties in dynamic circumstances of TRIP steels. Advanced experimental setups using the Hopkinson principle provide indeed tools for validation of the material and structural properties of TRIP steels.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call