Abstract

Turbine generator torsional vibration is becoming a major concern in modern power grids with a high level of changeability due to the operation of renewable energy sources. The traditional absence of standard torsional vibration monitoring and a lack of experience with the operation of torsional vibration monitoring systems opens up a wide range of opportunities for the design of torsional vibration monitoring systems and the possibility of their installation in power plants. As the measured signals are adversely affected by noise, proper filtering is essential for capturing the torsional vibration information. The benefits of the designed Kalman filtering method are the computational efficiency and the possibility of tackling two different types of noise: the state noise and the measurement noise. The feasibility of the proposed method is demonstrated by case studies based on practical signals measured on steam turbine generators.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call