Abstract

An enhanced insulated gate bipolar transistor (IGBT) model based on the Kraus model with new derivations based on an extra parameter accounting for p-i-n injection was developed to allow simulation of both trench and DMOS IGBT structures. Temperature dependence was also implemented in the model. The model was validated against steady-state and transient measurements done on an 800-A 1.7-kV Dynex IGBT module at 25/spl deg/C and 125/spl deg/C. The Spice model has also shown excellent agreement with mixed mode MEDICI simulations. The Spice model also takes into account for the first time the parasitic thyristor effect allowing the dc and dynamic temperature-dependent latchup modeling of power modules as well as their temperature-dependent safe operating area.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.