Abstract

A single precursor, octamethylcyclotetrasiloxane (OMCTS), was used to develop a pSiCOH interconnect dielectric with an ultralow dielectric constant k = 2.4. With no added porogen, the advanced pSiCOH dielectric has low pore size and low pore interconnectivity. The new OEx2.4 dielectric has a high carbon content with a significant fraction in the form of Si-CH2-Si bridging bond resulting in a film with relatively high modulus and increased resistance to process induced damage. The new OEx2.4 film shows significant improvement in device reliability (time dependent dielectric breakdown) over the reference k 2.55 and other k 2.4 dielectrics. This dielectric not only addresses the integration challenges but also provides capacitance benefit by retaining an overall lower integrated k value over the reference films. The results discussed in this paper indicate that the single-precursor OMCTS-based advanced pSiCOH, OEX2.4 dielectric is a strong candidate for sub-10 nm Cu/low k interconnects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.