Abstract
Live single-cell imaging has emerged as an advanced single-cell study tool for approaching a quantitative understanding of many biological questions in recent years. In previous cell studies using bulk cell measurements, the population averages can miss the information from cell to cell variability and mask the underlying signaling networks and mechanisms. In this paper, I address the key design considerations of developing a single-cell live imaging platform and demonstrate the capability of this technology through analyzing mES cell life cycle through the FUCCI system. Overall, our semi-automated single cell imaging platform not only offers adjustable intervals between fluorescent imaging, but also provides a constant temperature and gas feeding devices that allows the cells to proliferate for extended microscope imaging. Commercially produced incubators that fit onto the microscope stage and satisfied all requirements in restriction of the cell movement, gas feeding, temperature regulation and optical accessibility are not easily available. Thus, there exists a significant potential for our imaging setup to provide a versatile and adaptable live cell imaging platform for both academia and industrial researchers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.