Abstract

In his 1665 treatise, Micrographia, Robert Hooke described the many observations he had made using a microscope, including compartment-like structures in cork samples that he termed ‘cells’.1 In the three and a half centuries since Hooke’s day, both the microscope and our understanding of the cell have been vastly improved upon, and the current outlook suggests that the symbiotic relationship between the microscope and the cell will continue to flourish into the foreseeable future. The cell is a basic yet complicated ‘unit’ of interest to biology, just as the atom is to chemists. Ultimately, scientists want to ‘see to believe’ when it comes to an explanation of the complex inner workings of cells, but therein lies a complication. Seeing is not always a possibility in biological systems. Size, speed, sensitivity, and additional concerns plague the microscopist who wants to peek inside of a cell. Enter a variety of molecular and nanoparticle probes that are capable of tagging and pinpointing the location of biological components that would otherwise be invisible under the microscope. Advances in laser, camera, and imaging processing technologies have also played a crucial role in the burgeoning field of single cell imaging, because they have brought into view the fast processes that would normally escape the human eye. The purpose of this review is to highlight the key advances that have occurred in the past several years in the field of single cell optical imaging. It is not our intent to provide a comprehensive review of the types of experiments or the areas of cell research that are ongoing. Reviews with a distinctly biological flavor have been published recently, and these alternative reviews focus on specific details of the cell and the processes that occur within.2-7 Likewise, exceptional review papers that have discussed the full spectrum of nanoparticle probes and their properties have appeared recently.6-12 This review is designed to give an overview of the tools that are being specifically used to accomplish single cell imaging. As such, much of our emphasis in the first several sections of this paper is on imaging platforms, with a focus on design details that are important to single cell imaging experiments. Next we emphasize specific imaging experiments that highlight the types of findings that are possible at the nexus of microscopy, nanoprobes, and live cells. Particular attention is paid to the emerging orientation and rotational tracking of single probes linked to mechanistic functions and differentiated structures of biological interest. Finally, we provide a brief, yet rather complete, summary of single cell manipulation techniques.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.