Abstract
Improvements in the roll porous scaffold (RPS) 3D bioproduction technology will increase print density of 10-15µm cells by ~ 20% up to ~ 1.5 × 108 cells/mL and purity of organoid formation by > 17%. The use of 360 and 1200 dpi inkjet printheads immediately enables biomanufacturing with 10-30µm cells in a single organoid with performance > 1.8 L/h for 15µm layer thickness. The spongy bioresorbable ribbon for RPS technology is designed to solve the problems of precise placement, leakage and increasing in the number of instantly useable cell types and superior to all currently dominant 3D bioprinting methods in speed, volume, and print density without the use of expensive equipment and components. The potential of RPS for parallel testing of new substances studied was not on animals, but using generated 3D biomodels "organ on a chip". Solid organoids are more suitable for personalized medicine with simultaneous checking of several treatment methods and drugs, targeted therapy for a specific patient in vitro using the 3D composition of his personal cells, and selection of the most effective ones with the least toxicity. Overcoming the shortage of organs for implantation and personal hormone replacement therapy for everyone was achieved using printed endocrine glands based on their DNA.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of artificial organs : the official journal of the Japanese Society for Artificial Organs
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.