Abstract
Most current Advanced Receiver Autonomous Integrity Monitoring (ARAIM) methods are designed to use dual-frequency ionosphere-free observations. These methods assume that receiver bias is absorbed in the common receiver clock offset and bound satellite biases by nominal values. However, most multi-constellation Global Navigation Satellite Systems (GNSS) can offer triple frequency data that can be used for civilian applications in the future, which can improve observation redundancy, solution precision and detection of faults. In this contribution, we explore the use of this type of observations from GPS, Galileo and BeiDou in ARAIM. Nevertheless, the use of triple frequency data introduces receiver differential biases that have to be taken into consideration. To demonstrate the significance of these additional biases we first present a method to quantify them at stations of known coordinates and using available products from the International GNSS service (IGS). To deal with the additional receiver biases, we use a between-satellite single difference (BSSD) observation model that eliminates their effect. A pilot test was performed to evaluate ARAIM availability for Localizer Performance with Vertical guidance down to 200feet (LPV-200) when using the triple-frequency observations. Real data were collected for one month at stations of known coordinates located in regions of different satellite coverage characteristics. The BSSD triple-frequency model was evaluated to give early indication about its feasibility, where the implementation phase still requires further comprehensive studies. The vertical position error was always found to be bounded by the protection level proven initial validity of the proposed integrity model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.