Abstract

Stimulated Emission Depletion (STED) microscopy has evolved into an established imaging method offering super-resolution well beyond 50 nm. Whereas STED is now available in many laboratories, it is still in the focus of research to push the boundaries of its capabilities and applications. Time-resolved STED microscopy using time correlated single photon counting (TCSPC), is advantageous for many applications and promises further development for increased resolution and less photo-damage.Here, we show the application of established methods (e.g. gSTED) as well as emerging applications of time-resolved STED. We employ pulsed interleaved excitation (PIE), where the STED laser is pulsed at half the frequency of the excitation laser, such that STED and confocal data is taken practically at the same time. By using this approach, single molecule STED experiments can be carried out while the confocal control-experiment is performed simultaneously, allowing to account for measurement artifacts due to the high power of the STED laser. We will show examples from single molecule imaging, where blinking and bleaching are monitored using the confocal data. Furthermore, we will present STED-FCS data, where the confocal data allows insight into changes of the sample due to the STED laser. Since the control experiment for the influence of the STED laser is performed at the same time as the STED measurement, experimental parameters can be adjusted online to give highest resolution while ascertaining that the relevant information drawn from the experiment is not affected.Furthermore, we will present how electronically delaying the STED laser with respect to the excitation laser can increase resolution with no increase in photo-bleaching. By setting the arrival of the STED laser with an accuracy of about 20 ps, experimental conditions for fluorophores with different fluorescence lifetimes can be adjusted.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.