Abstract

The paper describes power supply and distribution systems to be used on unmanned/man-tended Columbus elements, capable of supplying 10 kW to 30 kW to a variety of users in low earth orbits (LEO's). For the definition of the Electrical Power System (EPS) challenging requirements as the provision of high power levels under hard LEO conditions, maintainability, commonality etc. are to be taken into account. These requirements are to be seen in conjunction with the Columbus IOC (initial operational capability) scenario stipulating that EPS hardware shall be used on the Polar Platform, the Pressurized Module attached to the U.S. Space Station and the Man-Tended Free Flier. According to the availability of European technologies, the baseline in the power generation area is a photovoltaic system which provides three regulated main buses (150 V d.c.) to the users. In order to maintain power supply during eclipse phases, nickel hydrogen batteries will be used for energy storage purposes with nickel cadmium as back-up solution. The power distribution system needs special attention. Due to the elevated voltage levels mechanical switch gear cannot be used any longer. It is to be replaced by solid state power controllers (SSPC). Because these devices show a totally different behaviour with regard to conventional relay contacts, new approaches in the area of switching and protection are necessary. In view of the crucial role of this new technology for the realization of medium voltage d.c. systems, it is of great importance for Columbus and, hence will receive adequate consideration in the paper. In order to cater for effective management and control of the power supply and distribution hardware, a so called p ower system in ternal da ta p rocessing assembly (PINDAP) has been introduced in the EPS. PINDAP is the key to reduced dependence on ground stations (alleviated ground support requirements); it keeps crew involvement in the EPS control process to as minimum and provides comprehensive means for EPS check-out and verification which facilitates in-orbit maintenance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.