Abstract

AbstractRecently, polymer materials have been at the forefront of other materials in building high‐performance flexible electronic skin (e‐skin) devices due to conspicuous advantages including excellent mechanical flexibility, good compatibility, and high plasticity. However, most research works just paid considerable attention and effort to the design, construction, and possible application of e‐skins that reproduce the tactile perception of the human skin sensory system. Compared with tactile sensing devices, e‐skins that aim to imitate the non‐contact sensing features in the sensory system of human skin tend to avoid undesired issues such as bacteria spreading and mechanical wear. To further promote the development of e‐skins to the human skin sensory system where tactile perception and non‐contact sensing complement each other, significant progress and advances have been achieved in the field of polymer materials enabled e‐skins for both tactile perception and non‐contact sensing applications. In this review, the latest progress in polymer material‐based e‐skins with regard to tactile, non‐contact sensing capabilities and their practical applications are introduced. The fabrication strategies of polymer materials and their role in building high‐performance e‐skins for tactile and non‐contact sensing are highlighted. Furthermore, we also review the research works that integrated the polymer‐based tactile and non‐contact e‐skins into robots and prostheses, smart gloves, and VR/AR devices and addressed some representative problems to demonstrate their suitability in practical applications in human–machine interactions. Finally, the current challenges in the construction of high‐performance tactile and non‐contact e‐skins are highlighted and promising properties in this direction, by taking advantage of the polymer materials, are outlined.image

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.