Abstract

The Morgantown Energy Technology Center (METC) of the U.S. Department of Energy (DOE) is actively sponsoring research to develop coal-based power generation systems that use coal more efficiently and economically and with lower emissions than conventional pulverized-coal power plants. Some of the more promising of the advanced coal-based power generation systems are shown in Figure 1: pressurized fluidized-bed combustion combined-cycle (PFBC), integrated gasification combined-cycle (IGCC), and direct coal-fueled turbine (DCFT). These systems rely on gas turbines to produce all or a portion of the electrical power generation. An essential feature of each of these systems is the control of particles at high-temperature and high-pressure (HTHP) conditions. Particle control is needed in all advanced power generation systems to meet environmental regulations and to protect the gas turbine and other major system components. Particles can play a significant role in damaging the gas turbine by erosion, deposition, and corrosion. Erosion is caused by the high-speed impaction of particles on the turbine blades. Particle deposition on the turbine blades can impede gas flow and block cooling air. Particle deposition also contributes to corrosive attack when alkali metal compounds adsorbed on the particles react with the gas turbine blades. Incorporation of HTHP particle control technologies into the advanced power generation systems can reduce gas turbine maintenance requirements, increase plant efficiency, reduce plant capital cost, lower the cost of electricity, reduce wastewater treatment requirements, and eliminate the need for post-turbine particle control to meet New Source Performance Standards (NSPS) for particle emissions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call