Abstract

Photo-chemical-transformations of organophosphate pesticides, chlorpyrifos, dimethoate and phorate, using advanced oxidation processes (AOPs) namely UV photolysis, UV/H2O2, UV/Fenton and Fenton systems in aqueous solution were investigated in this work. A laboratory set-up was designed to evaluate and select the optimal oxidation process. Results show that addition of hydrogen peroxide/Fenton's reagent increased the UV degradation rates of all pesticides, and data were simulated through kinetic modeling. Kinetic results evidence pseudo first-order degradation, with the rate constant of reaction as 3.3 × 10–4, 2.07 × 10–2 and 1.88 × 10–2 for chlorpyrifos, dimethoate and phorate, respectively. Furthermore treatment efficiencies obtained for the studied AOPs indicate that UV/Fenton was most efficient for chlorpyrifos (50.3% degradation) and UV/H2O2 for dimethoate (96.9%) and phorate (89.6%). Finally, the identification of degradation products indicated that the UV/H2O2 technique results in the formation of fewer end products, with low toxicity. However, UV irradiation of phorate results in information of more toxic degradation end products such as phorateoxonsulfone.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call