Abstract

Natural organic matter (NOM) refers to the dissolved organic matter in natural water that can pass through 0.45μm filter membrane. As a pivotal role in the surface water body, it has a significant effect on the efficiency of AOPs. In this study, Excitation emission matrix - parallel factor (EEM-PARAFAC) analysis is used to elucidate the changes of NOM fluorescence peaks after electrochemical oxidation process, two-dimensional correlation spectroscopy (2D-FTIR-COS) and Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS) are utilized to clarify the molecular characteristics of NOM in surface water and the effects of electrochemical oxidation on NOM molecules. The results indicate that parts of NOM molecules are mineralized into simple compounds and precursors of refractory organic matters produced by some NOM molecules after AOPs. It is concluded that the precursors of these refractory organic matters may belong to terrestrial humus (C2). Therefore, for the purpose of avoiding more refractory organic pollutants produced by NOM which can reduce the performance of AOPs in the water treatment process, factories should choose water sources with less humus as industrial water supply, or degrade humus by physical or chemical methods before industrial water supply.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.