Abstract

We present two perimeter daylighting systems that passively redirect beam sunlight further from the window wall using special optical films, an optimized geometry, and a small glazing aperture. The objectives of these systems are (1) to increase daylight illuminance levels at 4.6-9.1 m (15-30 ft) from the window aperture with minimum solar heat gains and (2) to improve the uniformity of the daylighting luminance gradient across the room under variable solar conditions throughout the year. The designs were developed through a series of computer-assisted ray-tracing studies, laser visualization techniques, and photometric measurements and observations using physical scale models. Bi-directional illuminance measurements in combination with analytical routines were then used to simulate daylight performance for any solar position, and were incorporated into the DOE-2.1E building energy analysis computer program to evaluate energy savings. Results show increased daylight levels and an improved luminance gradient throughout the year compared to conventional daylighting systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.