Abstract
An active-bridge-active-clamp (ABAC) topology with its associated switching patterns and modulation techniques is introduced in this paper. The topology has been designed to comply with stringent power quality requirements in a More Electric Aircraft application. The dual transformer secondary structure of the ABAC allows the definition of a particular phase shift-based switching pattern. The proposed switching pattern ensures not only the output current switching harmonics elimination but also even power sharing between the secondary half-bridges. Consequently, passives on the low-voltage side of the converter are minimized, and transformer dc bias is eliminated. All these features can be achieved independently from the operating point of the converter. In this paper, the basic operation of the ABAC converter is first introduced. The theoretical analysis of switching harmonics elimination and power sharing is then carried out in the development of the proposed switching patterns. The theoretical claims are validated by both simulation and experimental results on a 10-kW 270-V/28-V ABAC converter.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Journal of Emerging and Selected Topics in Power Electronics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.