Abstract
Long-wave infrared (LWIR, 8–14 µm) photonics is a rapidly growing research field within the mid-IR with applications in molecular spectroscopy and optical free-space communication. LWIR applications are often addressed using rather bulky tabletop-sized free-space optical systems, preventing advanced photonic applications, such as rapid-time-scale experiments. Here, device miniaturization into photonic integrated circuits (PICs) with maintained optical capabilities is key to revolutionize mid-IR photonics. Subwavelength mode confinement in plasmonic structures enabled such miniaturization approaches in the visible-to-near-IR spectral range. However, adopting plasmonics for the LWIR needs suitable low-loss and -dispersion materials with compatible integration strategies to existing mid-IR technology. In this paper, we further unlock the field of LWIR/mid-IR PICs by combining photolithographic patterning of organic polymers with dielectric-loaded surface plasmon polariton (DLSPP) waveguides. In particular, polyethylene shows favorable optical properties, including low refractive index and broad transparency between ∼2 μm and 200 µm. We investigate the whole value chain, including design, fabrication, and characterization of polyethylene-based DLSPP waveguides and demonstrate their first-time plasmonic operation and mode guiding capabilities along S-bend structures. Low bending losses of ∼1.3 dB and straight-section propagation lengths of ∼1 mm, pave the way for unprecedented complex on-chip mid-IR photonic devices. Moreover, DLSPPs allow full control of the mode parameters (propagation length and guiding capabilities) for precisely addressing advanced sensing and telecommunication applications with chip-scale devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.