Abstract

Accurate wind power forecasting plays a crucial role in the planning of unit commitments, maintenance scheduling, and maximizing profits for power traders. Uncertainty and changes in wind speeds pose challenges to the integration of wind power into the power system. Therefore, the reliable prediction of wind power output is a complex task with significant implications for the efficient operation of electricity grids. Developing effective and precise wind power prediction systems is essential for the cost-efficient operation and maintenance of modern wind turbines. This article focuses on the development of a very-short-term forecasting model using machine learning algorithms. The forecasting model is evaluated using LightGBM, random forest, CatBoost, and XGBoost machine learning algorithms with 16 selected parameters from the wind energy system. The performance of the machine learning-based wind energy forecasting is assessed using metrics such as mean absolute error (MAE), mean-squared error (MSE), root-mean-squared error (RMSE), and R-squared. The results indicate that the random forest algorithm performs well during training, while the CatBoost algorithm demonstrates superior performance, with an RMSE of 13.84 for the test set, as determined by 10-fold cross-validation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.