Abstract
To fulfill reliable battery management in electric vehicles (EVs), an advanced State-of-Charge (SOC) estimator is developed via machine learning methodology. A novel genetic algorithm-based fuzzy C-means (FCM) clustering technique is first used to partition the training data sampled in the driving cycle-based test of a lithium-ion battery. The clustering result is applied to learn the topology and antecedent parameters of the model. Recursive least-squares algorithm is then employed to extract its consequent parameters. To ensure good accuracy and resilience, the backpropagation learning algorithm is finally adopted to simultaneously optimize both the antecedent and consequent parts. Experimental results verify that the proposed estimator exhibits sufficient accuracy and outperforms those built by conventional fuzzy modeling methods.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have