Abstract
The main objective of this paper is to develop accurate novel frameworks for the estimation of the maximum pitting corrosion depth in oil and gas pipelines based on data-driven techniques. Thus, different advanced approaches using Artificial Intelligence (AI) models were applied, including Artificial Neural Network (ANN), M5 Tree (M5Tree), Multivariate Adaptive Regression Splines (MARS), Locally Weighted Polynomials (LWP), Kriging (KR), and Extreme Learning Machines (ELM). Additionally, a total of 259 measurement samples of maximum pitting corrosion depth for pipelines located in different environments were extracted from the literature and used for developing the AI-models in terms of training and testing.Furthermore, an investigation was carried out on the relationship between the maximum pitting depths and several combinations of probable factors that induce the pitting growth process such as the pipeline age, and the surrounding environmental properties. The results of the proposed AI-frameworks were compared using various criteria. Thus, statistical, uncertainty and external validation analyses were utilized to compare the efficiency and accuracy of the proposed AI-models and to investigate the main contributing factors for accurate predictions of the maximum pitting depth in the oil and gas pipeline.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.