Abstract

An advanced LKS (lane keeping system) for use on curving roads is presented to maintain autonomous vehicle driving within the target lane, without unintentional lane departure. There are the following two main objectives in designing this system: one is performing perfect lane keeping and the other is ensuring the dynamic stability of the vehicle, especially when driving on a curving and low-friction road with time-varying high speed. In this paper, a combined vehicle model, consisting of a lane keeping model and a vehicle lateral dynamic model, is firstly introduced. Then, a novel adaptive-weight predictive controller is used to calculate the desired steering angle and the additional yaw moment which provide coordinated control forlane keeping and dynamic stability control. Meanwhile, a square-root cubature Kalman filter-based vehicle sideslip angle observer, with a strong tracking theory modification (ST-SRCKF), is established to estimate the sideslip angle during the driving process. Finally, HIL (hardware-in-the-loop) tests and field tests are constructed, and the results show the effectiveness of our proposed LKS controller and ST-SRCKF sideslip angle estimation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.