Abstract
The preparation and characterization of glass reinforced epoxy filled with different weight percentage of geopolymers filler attained from fly ashand epoxy resins are reported limited of study. Recent glass reinforced epoxy pipe are reported exhibits relatively low mechanical properties, which limit their usage in structural applications and in oil and gas industrial. Thus, this restriction could be overcome through the formation of the addition of geopolymer fillers to improve their strength and toughness. The glass fiber was impregnated with different weight percentage and different molarity of fly ash-based geopolymer and epoxy hardener resin. Composite samples were made manually by filament winding technique and cured under room temperature. The sections perpendicular to the fibers and surfaces of the composites were analyzed by means of scanning electron microscope to estimate the adhesion between geopolymer matrices and fiber reinforcement. Relatively, wide range of geopolymer weight percentage from 10 % to 30 % at which can obtain high compressive properties, maximal values of compressive strength is 94.64 MPa and compressive modulus 2373.58 MPa for the sample with 30 % weight percentage of filler loading. These new composites materials show expressively enhanced mechanical properties if matched to straight glass reinforced epoxy pipe without any geopolymer filler. The positive mixture of synthetic method with the use of industrial by-products has acceptable fabricating novel low cost aluminosilicate binders, thanks to their suitable bondin contradiction of materials frequently used in structural application, could be used within the field of oil and gas industry.
Highlights
Summary
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IOP Conference Series: Materials Science and Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.