Abstract

Cutting tools made of advanced ceramics have the potential for high-speed finish machining as well as for high-removal-rate machining of difficult-to-machine materials. The raw materials used in these ceramics are abundant, inexpensive, and free from strategic materials. In spite of this, solid or monolithic ceramic tools are currently used only to a limited extent partly due to certain limitations of these materials and partly due to the inadequacy of the machine tools used. The advances in ceramic materials and processing technology, the need to use materials that are increasingly more difficult to machine, increasing competition, and the rapidly rising manufacturing costs, have opened new vistas for ceramics in machining applications. The development of ceramic tool materials can be broadly categorized into three types: monolithic forms, thin coatings, and whisker-reinforced composites. Such a classification provides a totally new perspective on ceramic tool materials and broadens their scope considerably, and is justified on the basis that it is the ceramic addition that makes the tool material more effective. A brief overview of these materials is presented in this paper.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call