Abstract

Due to the diversity and variability of harmful ions in polluted water bodies, the selective removal and separation for specific ions is of great significance in water purification and resource processes. Capacitive deionization (CDI), an emerging desalination technology, shows great potential to selectively remove harmful ionic pollutants and further recover valuable ions because of the simple operation and low energy consumption. Researchers have done a lot of work to investigate ion selectivity utilizing CDI, including both theoretical and experimental studies. Nevertheless, in the investigation of selective mechanisms, phenomena where carbon materials exhibit entirely opposite selectivity require further analysis. Furthermore, there is a need to summarize the specific chemical reaction mechanisms, including the formation of hydrogen bonds, complexation reactions, and ligand exchanges, within selective electrodes, which have not been thoroughly examined in detail previously. In order to fill these gaps, in this review, we summarized the recent progress of CDI technologies for ion selective separation, and explored the selective separation mechanism of CDI from three aspects: selective physical adsorption, specific chemical reaction, and the utilization of selective barriers. Additionally, this review analyzes in detail the formation process of chemical bonds and ion conversion pathways when ions interact with electrode materials. Finally, some significant development prospects and challenges were offered for the future selective CDI systems. We believe the review will provide new insights for researchers in the field of ion selective separation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.