Abstract
We present in this paper a new design of a capacitive calibration kit for scanning microwave microscopy (SMM). As demonstrated by finite element modelings, the produced devices are highly independent of material parameters due to their lateral configuration. The fabrication of these gold-based structures is realized by using well established clean-room techniques. SMM measurements are performed under different conditions, and all capacitive structures exhibit a strong contrast with respect to the non-capacitive background. The obtained experimental data are employed to calibrate the used SMM tips and to extract the capacitance of produced devices following a method based on the short-open-load calibration algorithm for one-port vector network analyzers. The comparison of experimental capacitance and nominal values provided by our models proves the applicability of the used calibration approach for a wide frequency range.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have