Abstract
The field of additive manufacturing increasingly demands innovative solutions to optimize material processing, improve equipment efficiency, and address maintenance challenges in high-utilization environments. This study investigates the operation and management of an FFF 3D printing production line comprising eight remotely controlled printers. The system supports custom manufacturing and educational activities, focusing on processing a range of thermoplastics and composite materials. A key contribution of this work lies in addressing the impact of frequent hardware servicing caused by shared use among users. Augmented reality (AR)-guided assembly and disassembly workflows were developed to ensure uninterrupted operations. These workflows are accessible via smart devices and provide step-by-step guidance tailored to specific material and equipment requirements. The research evaluates the effectiveness of AR-enhanced maintenance in minimizing downtime, extending equipment lifespans, and ensuring consistent material performance during manufacturing processes. Furthermore, it explores the role of AR in maintaining the mechanical, thermal, and chemical properties of processed materials, ensuring high-quality outputs across diverse applications. This paper highlights the integration of advanced material processing methodologies with emerging technologies like AR, aligning with the focus on enhancing manufacturing schemes. The findings contribute to improving process efficiency and adaptability in additive manufacturing, offering insights into scalable solutions for remote-controlled and multi-user production systems.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have