Abstract
<?Pub Dtl=""?> A wind turbine power curve essentially captures the performance of the wind turbine. The power curve depicts the relationship between the wind speed and output power of the turbine. Modeling of wind turbine power curve aids in performance monitoring of the turbine and also in forecasting of power. This paper presents the development of parametric and nonparametric models of wind turbine power curves. Parametric models of the wind turbine power curve have been developed using four and five parameter logistic expressions. The parameters of these expressions have been solved using advanced algorithms like genetic algorithm (GA), evolutionary programming (EP), particle swarm optimization (PSO), and differential evolution (DE). Nonparametric models have been evolved using algorithms like neural networks, fuzzy c-means clustering, and data mining. The modeling of wind turbine power curve is done using five sets of data; one is a statistically generated set and the others are real-time data sets. The results obtained have been compared using suitable performance metrics and the best method for modeling of the power curve has been obtained.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have