Abstract

 Abstract—The integrated circuits (ICs) industry uses a number of technology computer aided design (TCAD) software tools to simulate the manufacturing and the operation of many ICs at different levels. At very low level, the simulation tools are used to simulate the device fabrication and design. These simulation tools are based on solving mathematical equations that describe the physics of doping diffusion, silicon oxidation, etching, deposition, lithography, implantation, and metallization. The simulation of physical etching solves etching equations to calculate the etching rate. And this rate is used to move the geometry of the device. The simulation of non-physical (geometrical) etching is based on geometrical Boolean operations. In this paper, we are proposing new and advanced geometrical etching algorithms for the process simulation of three dimensional (3D) micro electro mechanical systems (MEMS) and MEMS-tunable vertical cavity semiconductor optical amplifiers (VCSOAs). These algorithms are based on advanced domain decomposition methods, Delaunay meshing algorithms, and surface re-meshing and smoothing techniques. These algorithms are simple, robust, and significantly reduce the overall run time of the process simulation of 3D MEMS and MEMS-tunable laser devices. The description of the proposed etching algorithms will be presented. Numerical simulation results showing the performances of these algorithms will be given and analyzed for realistic 3D MEMS and MEMS-tunable laser devices.

Highlights

  • In our real life, mechanical systems (MEMS) devices are used almost everywhere

  • MEMS technology leads to greater safety for automobile drivers

  • With their super-powerful sensors, MEMS accelerometers can sense when a vehicle has been in an impact; they can even judge the speed and severity of the impact in order to deploy airbags at the right speed and volume

Read more

Summary

El Boukili

Abstract—The integrated circuits (ICs) industry uses a number of technology computer aided design (TCAD) software tools to simulate the manufacturing and the operation of many ICs at different levels. We are proposing new and advanced geometrical etching algorithms for the process simulation of three dimensional (3D) micro electro mechanical systems (MEMS) and MEMS-tunable vertical cavity semiconductor optical amplifiers (VCSOAs). These algorithms are based on advanced domain decomposition methods, Delaunay meshing algorithms, and surface re-meshing and smoothing techniques. These algorithms are simple, robust, and significantly reduce the overall run time of the process simulation of 3D MEMS and MEMS-tunable laser devices.

INTRODUCTION
DESCRIPTION OF THE NEW ETCHING ALGORITHMS
Pseudo-Code of the New Etching Algorithm
Pseudo-Code of the New Smoothing Boundary Procedures
Findings
CONCLUSION
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call