Abstract

BackgroundThe adult subventricular zone (SVZ) contains stem and progenitor cells that generate neuroblasts throughout life. Although it is well accepted that SVZ neuroblasts are migratory, recent evidence suggests their progenitor cells may also exhibit motility. Since stem and progenitor cells are proliferative and multipotential, if they were also able to move would have important implications for SVZ neurogenesis and its potential for repair.Methodology/Principal FindingsWe studied whether SVZ stem and/or progenitor cells are motile in transgenic GFP+ slices with two photon time lapse microscopy and post hoc immunohistochemistry. We found that stem and progenitor cells; mGFAP-GFP+ cells, bright nestin-GFP+ cells and Mash1+ cells were stationary in the SVZ and rostral migratory stream (RMS). In our search for motile progenitor cells, we uncovered a population of motile βIII-tubulin+ neuroblasts that expressed low levels of epidermal growth factor receptor (EGFr). This was intriguing since EGFr drives proliferation in the SVZ and affects migration in other systems. Thus we examined the potential role of EGFr in modulating SVZ migration. Interestingly, EGFrlow neuroblasts moved slower and in more tortuous patterns than EGFr-negative neuroblasts. We next questioned whether EGFr stimulation affects SVZ cell migration by imaging Gad65-GFP+ neuroblasts in the presence of transforming growth factor alpha (TGF-α), an EGFr-selective agonist. Indeed, acute exposure to TGF-α decreased the percentage of motile cells by approximately 40%.Conclusions/SignificanceIn summary, the present study directly shows that SVZ stem and progenitor cells are static, that EGFr is retained on some neuroblasts, and that EGFr stimulation negatively regulates migration. This result suggests an additional role for EGFr signaling in the SVZ.

Highlights

  • The adult subventricular zone (SVZ) is one of two largest neurogenic areas of the adult brain [1]

  • Conclusions/Significance: In summary, the present study directly shows that SVZ stem and progenitor cells are static, that epidermal growth factor receptor (EGFr) is retained on some neuroblasts, and that EGFr stimulation negatively regulates migration

  • Using 3H-thymidine and histological analyses, Altman showed that neuroblasts migrate in the rostral migratory stream (RMS), a densely packed corridor of cells moving from the SVZ to the olfactory bulbs [6]

Read more

Summary

Introduction

The adult subventricular zone (SVZ) is one of two largest neurogenic areas of the adult brain [1]. Using 3H-thymidine and histological analyses, Altman showed that neuroblasts migrate in the rostral migratory stream (RMS), a densely packed corridor of cells moving from the SVZ to the olfactory bulbs [6]. These and many other studies of migration were static experiments that determined the final position of labeled cells or used cell morphology to assess migration. Two-photon time lapse studies revealed that in addition to long-distance migration, one third of motile SVZ cells move in local exploratory patterns [7]. The adult subventricular zone (SVZ) contains stem and progenitor cells that generate neuroblasts throughout life. Since stem and progenitor cells are proliferative and multipotential, if they were able to move would have important implications for SVZ neurogenesis and its potential for repair

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call