Abstract

Although hedgehog (Hh) signaling pathway is inactive in adult healthy liver, it becomes activated during acute and chronic liver injury and, thus, modulates the reparative process and disease progression. We developed a novel mouse model with liver-specific knockout of Smoothened (Smo LKO), and animals were subjected to Fas-induced liver injury invivo. Results showed that Smo deletion in hepatocytes enhances Fas-induced liver injury. Activation of Hh signaling in hepatocytes in the setting of Fas-induced injury was indicated by the fact that Jo2 treatment enhanced hepatic expression of Ptch1, Smo, and its downstream target Gli1 in control but not Smo LKO mice. Primary hepatocytes from control mice showed increased Hh signaling activation in response to Jo2 treatment invitro. On the other hand, the Smo KO hepatocytes were devoid of Hh activation and were more susceptible to Jo2-induced apoptosis. The levels of NF-κB and related signaling molecules, including epidermal growth factor receptor and Akt, were lower in Smo KO livers/hepatocytes than in control livers/hepatocytes. Accordingly, hydrodynamic gene delivery of active NK-κB prevented Jo2-induced liver injury in the Smo LKO mice. Our findings provide important evidence that adult hepatocytes become responsive to Hh signaling through up-regulation of Smo in the setting of Fas-induced liver injury and that such alteration leads to activation of NF-κB/epidermal growth factor receptor/Akt, which counteracts Fas-induced hepatocyte apoptosis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call