Abstract

The interaction between double-stranded (ds) calf-thymus DNA and chromium in the presence of curcumin (CC) was studied by differential pulse adsorptive transfer voltammetry using carbon paste electrode (CPE). Curcumin–Cr complex generated changes in calf thymus DNA. The mechanism for DNA cleavage by curcumin–Cr complex appears to involve both the hydroxyl radical as well as singlet oxygen. The characteristic peak of dsDNA, due to the oxidation of guanine residues, drastically decreased. The increased DNA damage by curcumin–Cr complex was observed in the presence of various concentrations of chromium(VI).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.