Abstract

The phenol removal by adsorption through the guava tree bark has been studied in this research. The surface characterizations of the guava tree bark were assessed through BET, FTIR, and SEM apparatus. The phenol removal percentage was investigated in batch experiments taking phenol content (30-150mg/L), time (30-180min), pH (4-9), adsorbent dose (1-6g/L), and temperature (30-50°C). The maximum percentage of phenol removal was obtained at 90.67% at the phenol concentration of 30mg/L, the contact time of 120min, pH of 7, adsorbent dose of 4g/L, and temperature of 50°C. The kinetic study indicated that the second-order was superior to the first order. The isotherm study exhibited that the Freundlich isotherm fitted best among the Langmuir, D-R (Dubinin-Radushkevich), and Temkin isotherms. The value of adsorption energy evaluated by the D-R isotherm supported physical adsorption; however, the mechanism seemed to be weaker since the correlation coefficient of the D-R model was found to be quite less than the correlation coefficients of other isotherm models. The adsorption mechanisms through film diffusion and chemisorption were well established as tested by the Reichenberg model, the Elovich model, the Fick model, the Furusawa and Smith model, and the Boyd model. The adsorption thermodynamics concluded that the adsorption method supported endothermic, random, and spontaneous. The scale-up design, the procedure for safe disposal of spent adsorbent, and the regeneration of the adsorbent were deliberated in this research. The research determined that the guava tree bark is suitable for the removal of phenol from wastewater.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.